

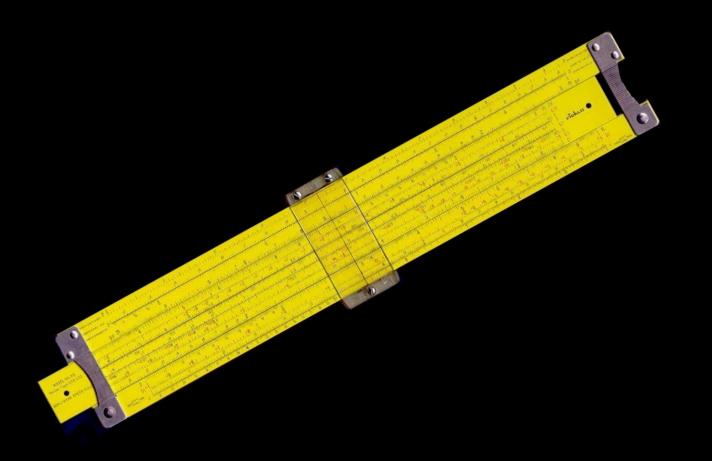
Computers to the Moon

Mark Schulman

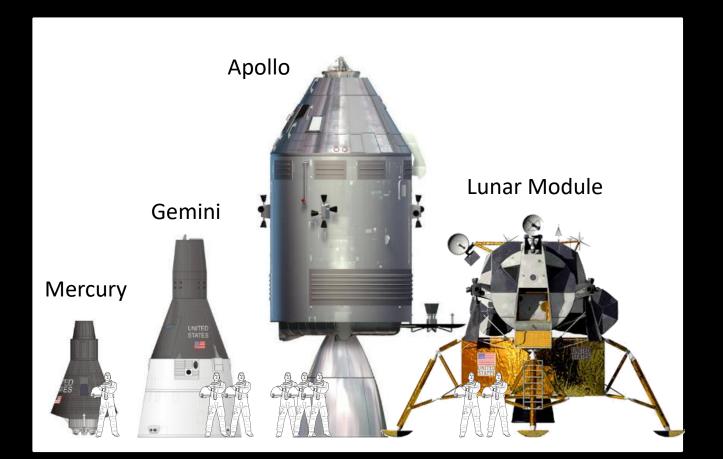
SpaceX Crew Dragon

Agenda

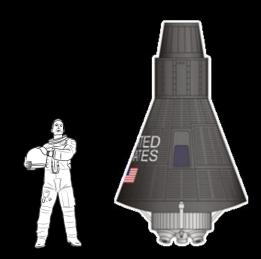
• Talk about the development of computers in the early U.S. space program, and the little-known role of how they got us to the Moon.



1960s Computing



NASA Real Time Computing Center, 1966

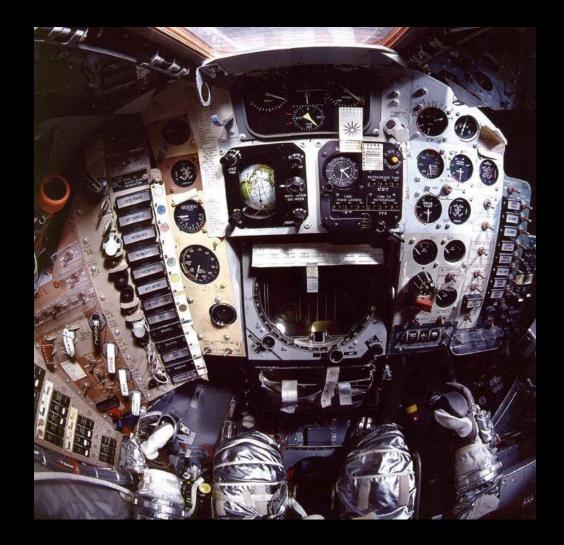

Personal Computers in 1960

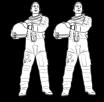
Pioneering U.S. Spacecraft

Mercury

Mercury

- 1961 1963
- 6 flights
- Goal: To put an American into space
- Launched aboard Redstone and Atlas




The Mercury Computer

• There wasn't one.

Gemini

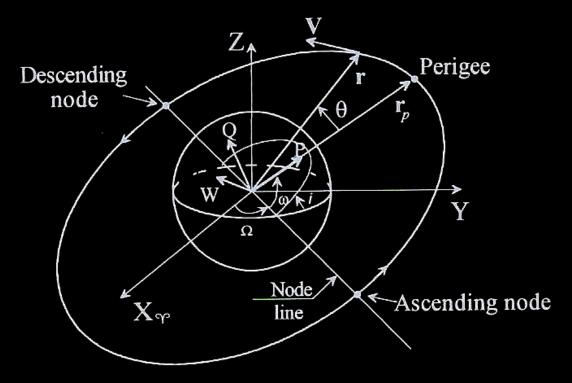
Gemini

- 1965 1966
- 10 flights
- Crew of 2 (16 different astronauts)
- Launched aboard Titan II

Gemini Goals

Perfect techniques for getting to the Moon

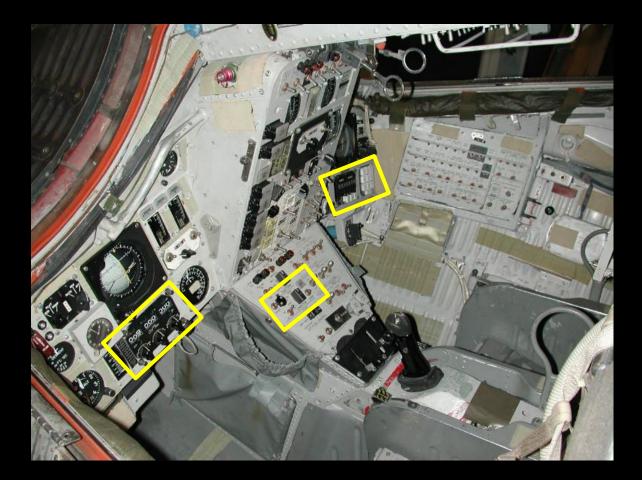
- 1. Prove that people can work outside the spacecraft
- 2. Long-duration flights
- 3. Navigate in space: orbit changes, rendezvous and docking



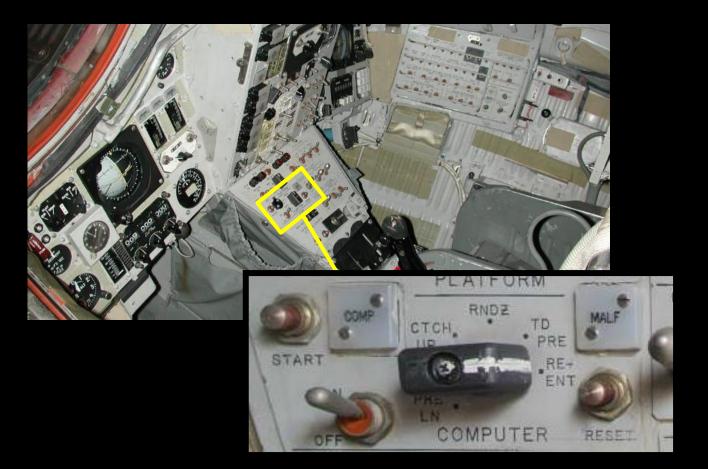
Space walks and long duration don't require a computer

Maneuvering in Space

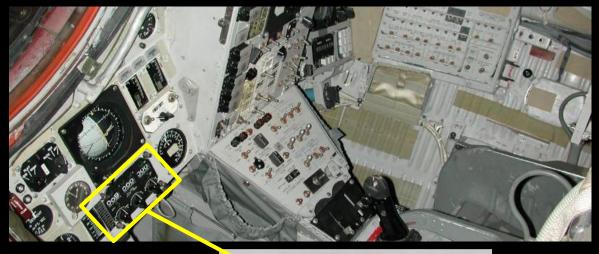
• There's a reason they call it rocket science



Gemini On-Board Computer (OBC)


- Built by IBM Federal Systems Division
- True digital computer
- Clock speed: ~7 kHz
- Core memory, 4K words
- Weight: 59 pounds

Gemini Control Panel


Main Computer Panel

Computer User Interface

Computer User Interface

Gemini 6 and 7

• Dec. 15, 1965

Agena Target Vehicle

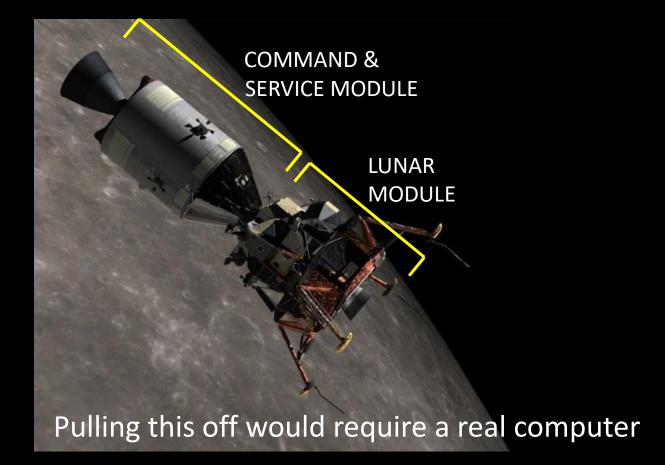
- 1966
- Gemini 8, 9, 10, 11, 12

Apollo

*ħ*ħħ

Apollo

- 1968 1972
- 11 flights
- Crew of 3 (29 astronauts)
- Launched aboard Saturn rockets
- Goal: Land people on the Moon



1969 - 1972

Apollo Spacecraft and Mission

Computer Requirements

- Navigate from the Earth to the Moon
- Continuously update position and attitude
- Control spacecraft attitude and engines
- Perform all calculations for lunar landing, ascent, rendezvous
- Remote updates from the ground
- Real-time information display

The Apollo Guidance Computer (AGC)

- Developed by MIT
- Manufactured by Raytheon
- Development cost: \$26.6 million

AGC Hardware

- 15-bit word (plus a parity bit)
- 36k ROM (core rope)
- 2k RAM
- Clock speed: ~ 40 kHz
- Weight: 70 pounds
- One in the Command Module, one in the Lunar Module

Core Rope Memory

• Wires woven through iron cores

Core Rope – How It Was Made

External Storage

Interfaces

- Gyroscopes and accelerometers
- Sextant and telescope
- Radar equipment
- Display and Keyboard
- Engines (main engines, plus control thrusters)
- Flight instruments

Software

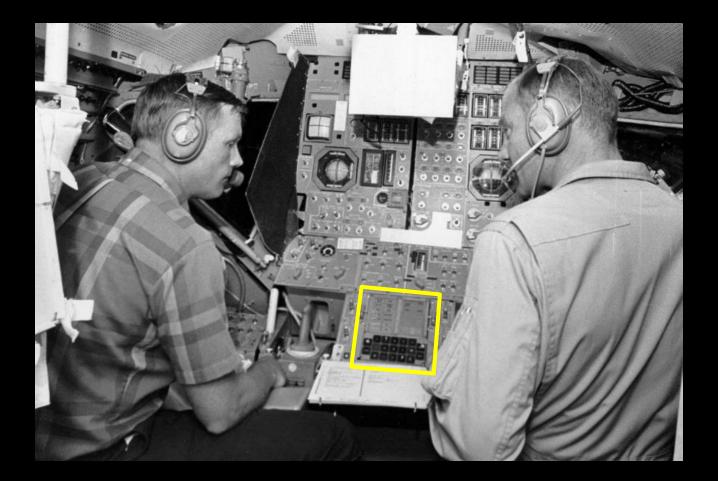
- Hardware the same in both spacecraft
- Different software:
 - Command Module: Colossus
 - Lunar Module: Luminary
- 1400-man years of effort, peak workforce of 350

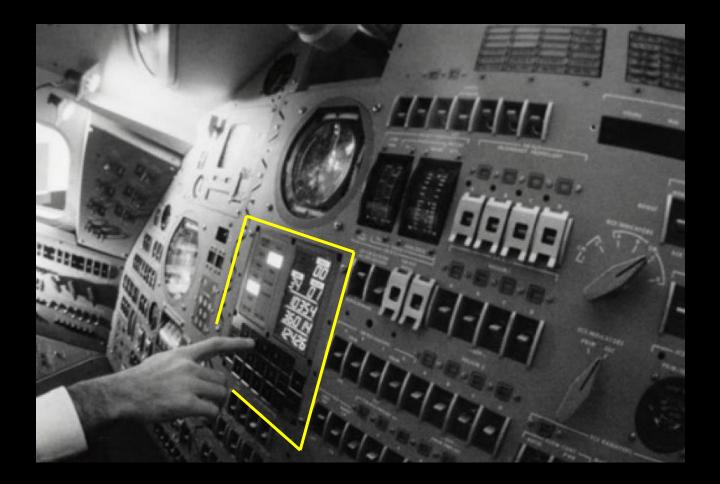
	CAF	81113	IS UN-ATTITUDE-HOLD DISCRETE PRESENT?
	RAND	CHAN31	
	CCS	A	1000 - 111 - 100 - 100 - 1
	TCF	GUILDRET	YES: ALL'S WELL
P66N0W?	cs	MODREG	
	AD	DEC66	
	EXTEND		
	BZF	RESTART?	
	CA	RODCOUNT	NO. HAS THE ROD SWITCH BEEN "CLICKED"?
	EXTEND		
	BZF	GUILDRET	NU. CONTINUE WITH AUTOMATIC LANDING.
	TCF	STARTP66	YES. SWITCH INTO THE ROD MODE.
RESTART?	CA	FLAGWEDI	HAS THERE BEEN & RESTART?
	MASK	RODFLBIT	
	EXTEND		
	BZF	STRTP66A	YES. REINITIALIZE BUT LEAVE VOGVERT AS
	521	STRIFUUR	Is.
	TCF	VERTGUID	NO: CONTINUE WITH R.D.D.

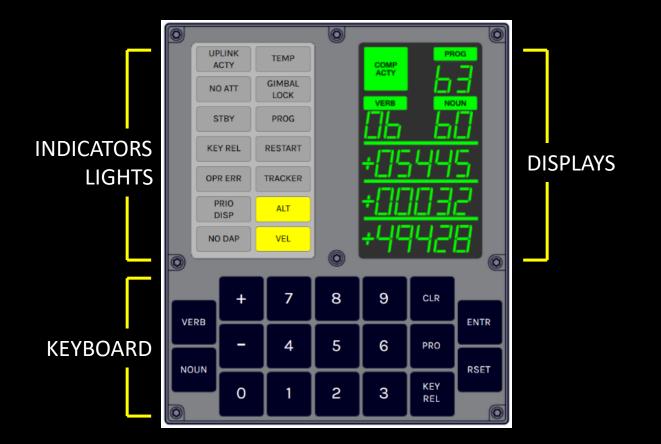
Why the AGC Software was Interesting

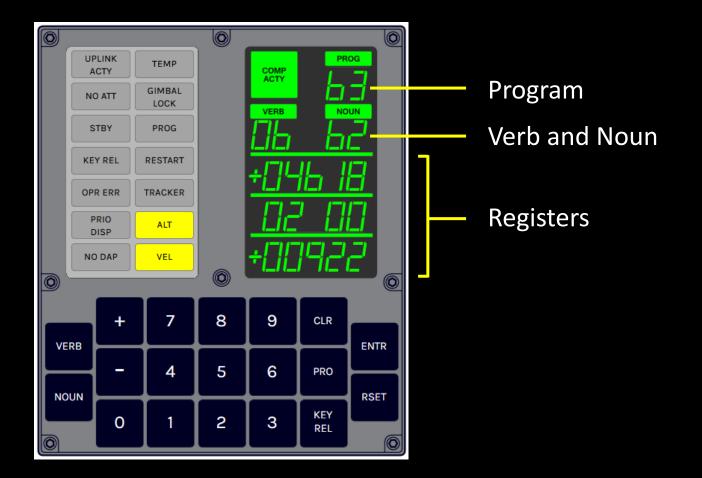
- Real-time processing
- Virtual machine interpreter
- Absolutely had to work

Interface

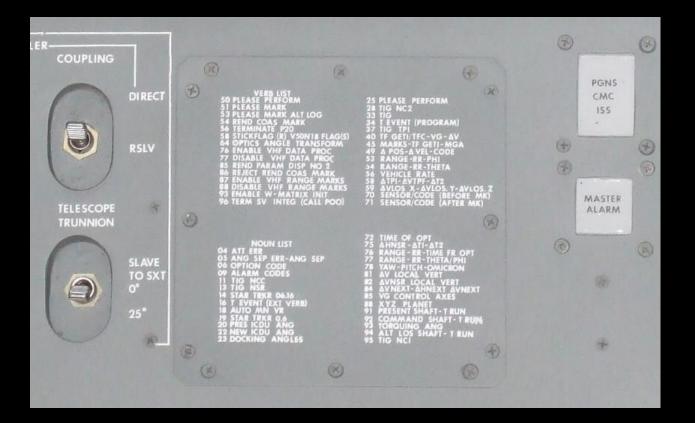

- So how did the crew interact with the computer?
- Mouse/keyboard/widescreen display?


Display/Keyboard (DSKY)


DSKY in the Lunar Module


DSKY in the Command Module (1 of 2)

The DSKY (Display and Keyboard)



Communicating with the AGC

- Verbs: Command to do something
- Noun: Piece of data to do it with

DSKY Cheat Sheets

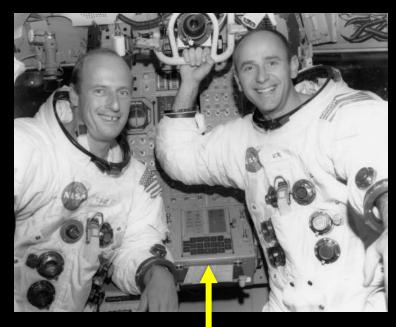
	M	МСС-Н
P20 RENDEZVOUS NAVIGATION ACQUIRE AND TRACK CSM MAINTAIN RR TRACKING ATTITUDE SLEW STEERABLE ANT ANT P 58, Y -38	V32 - MARKS = 5 V32 - MARKS = 10 RCS TEMP/PRESS/QTY CK AFT OMNI, PCM LBR FINAL CSI COMPUTATION V90 OUT OF PLANE	CSM: R 0, P <u>180</u> /271, Y 0
V83 SET ORDEAL P41 RCS THRUSTING RCS, CSI	V47 INITIALIZE AGS (PCM-HI) CSI DATA TO CSM (PCM-LO) LOAD AGS ΔV TIG: 125:21:19	+2
VERIFY RESIDUALS	BT: 45 SEC ΔV: 49.5 FPS	LM FDAI: R 0, P 187.8, Y 0
Z AXIS BORESIGHT	V76, V67, VHF RANGING P33 CDH PRETHRUST V93 MARKS = 4 V32 MARKS = 3	
MAINTAIN RR AND VHF TRACKING ATTITUDE	V90 OUT OF PLANE V32 MARKS = 10	
P41 RCS THRUSTING	P30 EXTERNAL AV V90 OUT OF PLANE LOAD AGS AV	
RCS, PLANE CHANGE	TIG: 125:50:28	
	V76, P33 CDH PRETHRUST	

Sample DSKY Operations

- 1. Lamp test
- 2. Display the current mission time
- 3. Key in weights of both spacecraft

Landing on the Moon

- One attempt, no second chances!
- AGC handles all guidance and control
- Three programs: P63, P64, P66


Apollo 12 Landing

- November 19, 1969 Ocean of Storms
- Pete Conrad, Dick Gordon, Al Bean
- First precision landing

Apollo 12 Dramatis Personae

"Pete" Conrad Commander

Al Bean LM Pilot

Apollo Guidance Computer

P63 - Braking Phase

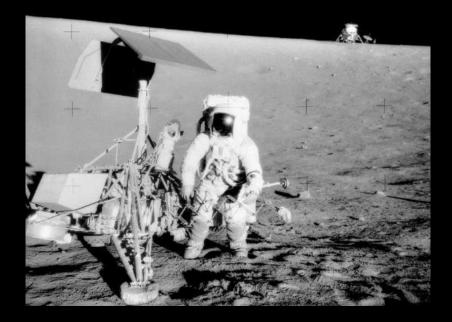
- Started 10-20 minutes before descent (PDI)
- Computes landing site targeting
- Ignition begins at ...
 - 50,000 feet altitude
 - 240 miles from site
 - 5,540 feet/sec (3,777 mph)
 - 12 minutes from landing

Landing Cue Cards

								PDI THRU TD+3 MIN					
					PD1	THRU	TD+3 MIN						PAGE
RESET WATCH -1:00 MASTER ARM-ON - :30 ENG ARM-DES	TFI	0	VI	(-ĤMAX) -Hdot	(AHMAX) H	DPS	SBD		H	(-ĤMAX) -HDOT	DPS	VH (362)	GE 6
- :07.5 ULLAGE - :05			5560.0 5490.0	<u>2.0</u> 7.0	50000 49900	95 95	2/1	P64	7000	(228.0) 151.0 (208.0)	19	392.0	
START PB - PUSH + :05 des eng ovrd			5 <u>210.0</u> 4910.0	<u>37.0</u> 59.0	49300 47800	<u>91</u> 86	7/-3	P64 + 15 SEC: No throttle dn - Abort	6000	1 34.0 (187.0)	19	367.0	
-ON MASTER ARM-OFF +0:261 THROTTLE UP /T/W > 1.6	2:00 2:30	95 90	4610.0 4310.0	73.0 82.0	45800 43500	<u>80</u> 75	<u>15/-11</u>		<u>5000</u>		18 17	335.0 296.0	:
V21N69 V57E - (+) LR HIGHER THAN LGC PRO TO	<u>3:00</u> 3:30	<u>86</u> 83	3990.0 3670.0	87.0 89.0	40900 38300	70 65	22/-16		3000	(136.0) 71.0 (105.0)	16	249.0	
PERMIT LR DATA √ED BATTS			3330.0	91.0	(+17000) 35700 (+17000)	60	26/ -20		2000	(64.0)	15	185.0 103.0	
			2990.0 <u>2640.</u> 0	91.0 93.0	32700 (+15800) <u>30500</u> (+12800)	54 49	29/-22	PGNS MODE CONT- ATT HOLD P66	500	(36.0) 17.0 (29.0)	11	48.0	Þ
N68		1	2270.0 1890.0	92.0 86.0	26400 (+11400) 24700	44 39	32/-25	X-PNTR-LO MULT	400	14.0 (21.0)	<u>11</u>	32.0	APOLLO
223+00120 (DO NOT ENTR)			1490.0 1230.0	(432.0) 69.0 (401.0) 95.0	(+9200) 21800 (+8200) 18900	33 30	39/-29	DES OTY LT+1+34	<u>300</u> 200	12.0 (12.0) 9.0	11 10	<u>21.0</u> 7.0	14
SEQ CAMR - ON Eval man cont	7:30	65	980.0	(367.0) 119.0 (323.0)	(+6900) 16100 (+5600)	27		ENG STOP - PUSH PRO				- PUSH	FLICHT
223E @ 12K	8:00 8:30		7 <u>30,0</u> 480,0	252.0)	12800 (+2400) 8300	23 20	40/-29	MODE CONTROL (BOTH) DES ENG CMD OVRD - (ENG ARM - OFF 413 + 1		ENG ST ENG ST	op – Art –	RESET	DATA
-								RECYCLE PARKER VALV	ES				FIE
DATE	12/18/	70						LM TIMEL	.INE BO	OK			

P64 - Approach Phase

- Computer runs P64 automatically ...
 - 7,000 feet altitude
 - 700 feet/second (477 mph)
 - 2 miles from landing site
- First view of landing site


P66 - Landing Phase

- Computer runs P66 when crew flips a switch ...
 - 300 feet altitude
 - ~6 feet/second (4 mph)
- Seconds until landing
- Computer no longer targeting

Apollo 12 and Surveyor 3

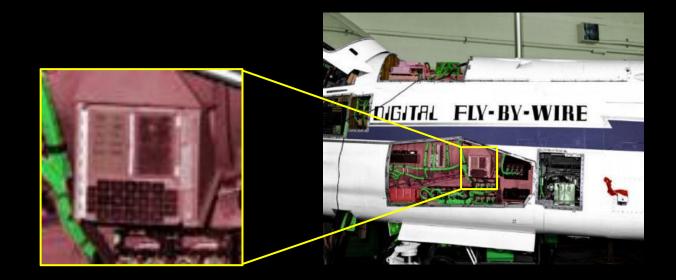
• One of the goals: retrieve parts from Surveyor 3, landed 2.5 years before

A Few Pioneering Things

- Logic built entirely with integrated circuits
- Priority multitasking
- Digital fly-by-wire
- Digital autopilot
- Discipline of software engineering

Margaret Hamilton

 Director of Software Engineering Division of MIT's Instrumentation Lab


Margaret Hamilton

Presidential Medal of Freedom, 2016

Legacy of the AGC

• Already "bleeding edge" by the end of the Apollo program

Abort Guidance Systems

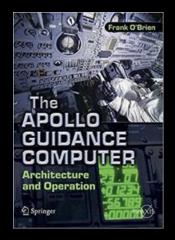
- Simple backup computer
- Pronounced "ags"

The AGC in Popular Culture

Apollo 13

Valerian and the City of a Thousand Planets

Valerian and the City of a Thousand Planets



Reproductions

Explore More

- The Apollo Guidance Computer, by Frank O'Brien
- Virtual AGC http://www.ibiblio.org/apollo
- AGC source code https://github.com/chrislgarry/Apollo-11
- YouTube: CuriousMarc

Questions?

Computers to the Moon

Mark Schulman Central Florida Computer Society

marks@schulmans.com

